结论 设 a⃗=(x0,y0)\vec{a} = (x_0, y_0)a=(x0,y0),旋转角为 θ\thetaθ,旋转后的向量为 b⃗=(x1,y1)\vec{b}=(x_1, y_1)b=(x1,y1),则: {x1=x0cosθ−y0sinθy1=x0sinθ+y0cosθ \left\{ \begin{aligned} x_1 & = x_0\cos \theta - y_0\sin \theta \\ y_1 & = x_0\sin \theta + y_0\cos \theta \\ \end{aligned} \right. {x1y1=x0cosθ−y0sinθ=x0sinθ+y0cosθ 并且它们的模长相等。 推导 仅用到一点点极坐标和和角公式的内容: a⃗=(rcosα,rsinα)b⃗=(rcos(α+θ),rsin(α+θ))=(rcosαcosθ−rsinαsinθ,rsinαcosθ+rcosαsinθ)=(x0cosθ−y0sinθ,x0sinθ+y0cosθ)\begin{aligned} \vec{a} &= (r\cos\alpha, r\sin\alpha)\\ \vec{b}&=(r\cos(\alpha+\theta), r\sin(\alpha+\theta))\\ &=( r\cos\alpha \cos\theta - r\sin\alpha \sin\theta,r\sin\alpha \cos\theta +r\cos\alpha \sin\theta)\\ &=(x_0\cos\theta-y_0\sin\theta, x_0\sin\theta + y_0\cos\theta) \end{aligned} ab=(rcosα,rsinα)=(rcos(α+θ),rsin(α+θ))=(rcosαcosθ−rsinαsinθ,rsinαcosθ+rcosαsinθ)=(x0cosθ−y0sinθ,x0sinθ+y0cosθ)